NPRE 477 NPRE 498ESU NPRE 498ESG Energy Storage Engineering Fall 2023

Online Temporary Alternative Coverage and access during Covid-19 Pandemic and possible resurgence through mutations and variants

1. Please read the assigned-reading lecture-notes chapters.

2. Then answer the corresponding written assignment,

3. For questions about the assignments, please access the teaching assistants by email:

https://www.mragheb.com/NPRE%20402%20ME%20405%20Nuclear%20Power%20Engineering/talist.htm

4. Submit the corresponding written assignment through email to https://canvas.illinois.edu

5. Please use either the Word or pdf formats

6. In case of internet "rationing" (e. g. to health and government authorities), instability, or collapse through overload, please read the lecture notes and submit the corresponding assignments. Already-taken tests and submitted assignments would be used in assessing the final grade.

Threat of Nuclear War:

https://www.youtube.com/watch?v=M7hOpT0lPGI

Regrettably, some 3,278 colleges and universities across the USA have been impacted by the Covid-19 pandemic, with many temporarily closing their campuses and switching to online classes, affecting more than 22 million students.

Number	Date Assigned	Due Date	Description			
			Reading Assignment			
			Preface			
			Written Assignment			
			Using a Ragone plot, compare the followin	g energy storage options:		
			1. Chemical storage using Li-ion batteries,			
			2. Fuel cells using hydrogen as an energy c	arrier.		
1	8/21	8/28	provide the power needs for a family of fou	<i>power</i> for a solar or wind energy installation to ar in different countries, assuming the presence of anks, an overall conversion efficiency of 30 etor of 40 percent for both wind and solar.		
			Country	Energy consumption [kWe.hr / (capita.year)]		
			USA	12,878		
			Japan	7,432		
			Switzerland	7,206		
			Germany	6,027		
			Hong Kong	4,847		
			China	1,899		

Reading Assignment Preface Written Assignment Draw a diagram for the Internet of Things (IoT) envisioned for energy systems showing its components and the interconnections between them.8/238/30Construct a table showing the allocation of electrical energy production, storage (pumped), export and use on a given day at two different times of the day. Use the link: Energy mix in electrical production, France https://www.rte-france.com/en/eco2mix/eco2mix-mix-energetique-en or: https://www.rte-france.com/en/eco2mix/power-generation-energy-source8/259/1Reading Assignment Preface Introduction Written Assignment List the characteristics of a viable energy Storage System.8/259/1List the advantages of energy storage in conjunction with renewable and conventional Energy systems. An electrical storage battery is charged from a power supply at 1 kW for an hour. If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$ $2I_2 + ?+4H_2O \rightarrow 4HI + ?$
8/23B/30Draw a diagram for the Internet of Things (IoT) envisioned for energy systems showing its components and the interconnections between them.8/238/30Construct a table showing the allocation of electrical energy production, storage (pumped), export and use on a given day at two different times of the day. Use the link: Energy mix in electrical production, France https://www.rtc-france.com/en/eco2mix/eco2mix-mix-energetique-en or: https://www.rtc-france.com/en/eco2mix/power-generation-energy-source8/259/1Reading Assignment Preface Introduction Written Assignment List the characteristics of a viable energy Storage System.8/259/1List the advantages of energy storage in conjunction with renewable and conventional Energy systems. An electrical storage battery is charged from a power supply at 1 kW for an hour. If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
8/238/30components and the interconnections between them.8/238/30Construct a table showing the allocation of electrical energy production, storage (pumped), export and use on a given day at two different times of the day. Use the link: Energy mix in electrical production, France https://www.rte-france.com/en/eco2mix/eco2mix-mix-energetique-en or: https://www.rte-france.com/en/eco2mix/power-generation-energy-source8/258/1Reading Assignment Preface Introduction Written Assignment List the advantages of energy storage in conjunction with renewable and conventional Energy systems. An electrical storage battery is charged from a power supply at 1 kW for an hour. If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
8/238/30Construct a table showing the allocation of electrical energy production, storage (pumped), export and use on a given day at two different times of the day. Use the link: Energy mix in electrical production, France https://www.rte-france.com/en/eco2mix/eco2mix-mix-energetique-en or: https://www.rte-france.com/en/eco2mix/power-generation-energy-source8/258/30Reading Assignment Preface Introduction Written Assignment List the characteristics of a viable energy Storage System.8/259/1List the advantages of energy storage in conjunction with renewable and conventional Energy systems. An electrical storage battery is charged from a power supply at 1 kW for an hour. If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
8/259/1Reading Assignment Preface Introduction It is the advantages of energy storage in conjunction with renewable and conventional Energy systems.8/259/1List the advantages of energy storage in conjunction with renewable and conventional Energy systems.An electrical storage battery is charged from a power supply at 1 kW for an hour. If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment Preface Introduction Written Assignment List the advantages of energy storage from a power supply at 1 kW for an hour. If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O+?+O_2$
Image: state in the second state is a second state in the second state is a second st
https://www.rte-france.com/en/eco2mix/eco2mix-mix-energetique-en or: https://www.rte-france.com/en/eco2mix/power-generation-energy-source $8/25$
or: https://www.rte-france.com/en/eco2mix/power-generation-energy-source8/25Reading Assignment Preface Introduction Written Assignment List the characteristics of a viable energy Storage System.8/259/1List the advantages of energy storage in conjunction with renewable and conventional Energy systems. An electrical storage battery is charged from a power supply at 1 kW for an hour. If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
Image: state in the second
8/259/1Reading Assignment Preface Introduction Written Assignment List the characteristics of a viable energy Storage System.8/259/1List the characteristics of a viable energy storage in conjunction with renewable and conventional Energy systems. An electrical storage battery is charged from a power supply at 1 kW for an hour. If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment 1. Energy Storage Options Written Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
8/259/1Preface Introduction Written Assignment List the characteristics of a viable energy Storage System.8/259/1List the advantages of energy storage in conjunction with renewable and conventional Energy systems. An electrical storage battery is charged from a power supply at 1 kW for an hour. If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment 1. Energy Storage Options Written Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
8/259/1Introduction Written Assignment List the characteristics of a viable energy Storage System.8/259/1List the characteristics of a viable energy storage in conjunction with renewable and conventional Energy systems.An electrical storage battery is charged from a power supply at 1 kW for an hour. If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment 1. Energy Storage Options Written Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
8/259/1Written Assignment List the characteristics of a viable energy Storage System.8/259/1List the advantages of energy storage in conjunction with renewable and conventional Energy systems.An electrical storage battery is charged from a power supply at 1 kW for an hour. If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
8/259/1List the characteristics of a viable energy Storage System.8/259/1List the advantages of energy storage in conjunction with renewable and conventional Energy systems.An electrical storage battery is charged from a power supply at 1 kW for an hour. If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment 1. Energy Storage Options Written Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
List the advantages of energy storage in conjunction with renewable and conventional Energy systems. An electrical storage battery is charged from a power supply at 1 kW for an hour. If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts? Reading Assignment 1. Energy Storage Options Written Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
systems.An electrical storage battery is charged from a power supply at 1 kW for an hour.If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment 1. Energy Storage Options Written Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
An electrical storage battery is charged from a power supply at 1 kW for an hour.If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment 1. Energy Storage Options Written Assignment
If its efficiency is 60 percent, how long would it take to totally discharge it if it used to supply a load at 100 Watts?Reading Assignment 1. Energy Storage Options Written Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
Ioad at 100 Watts?Reading Assignment1. Energy Storage OptionsWritten AssignmentTo produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
Reading Assignment1. Energy Storage OptionsWritten AssignmentTo produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
1. Energy Storage Options Written Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
Written Assignment To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
To produce Hydrogen as an energy carrier, balance the thermos-chemical reactions used in the high temperature Iodine Sulfur (IS) hydrogen production process: $2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
$2H_2SO_4 \rightarrow 2H_2O + ?+O_2$
$2I_2 + ?+ 4H_2O \rightarrow 4HI + ?$
$4HI \rightarrow 2H_2 + ?$
$2H_2O \rightarrow 2H_2 + ?$
In the simple pendulum without friction, energy that is stored as potential energy at the top of
In the simple pendulum without friction, energy that is stored as potential energy at the top of its stroke ($E_p = mgh$) is transformed into kinetic energy at the bottom of the stroke ($E_k = \frac{1}{2}$
In the simple pendulum without friction, energy that is stored as potential energy at the top of
In the simple pendulum without friction, energy that is stored as potential energy at the top of its stroke (E _p = mgh) is transformed into kinetic energy at the bottom of the stroke (E _k = ½ mv ²), then back as potential energy in a cyclic manner. 1. For a stored potential energy of 1 joule what would be the speed v of a 1 kg pendulum at the bottom of its stroke?
In the simple pendulum without friction, energy that is stored as potential energy at the top of its stroke ($E_p = mgh$) is transformed into kinetic energy at the bottom of the stroke ($E_k = \frac{1}{2}$ mv ²), then back as potential energy in a cyclic manner. 1. For a stored potential energy of 1 joule what would be the speed v of a 1 kg pendulum at the
In the simple pendulum without friction, energy that is stored as potential energy at the top of its stroke (Ep = mgh) is transformed into kinetic energy at the bottom of the stroke (Ek = ½ mv ²), then back as potential energy in a cyclic manner. 1. For a stored potential energy of 1 joule what would be the speed v of a 1 kg pendulum at the bottom of its stroke? 2. To what height h will the pendulum rise at the highest point in its stroke? Reading Assignment
In the simple pendulum without friction, energy that is stored as potential energy at the top of its stroke (E _p = mgh) is transformed into kinetic energy at the bottom of the stroke (E _k = ½ mv ²), then back as potential energy in a cyclic manner. 1. For a stored potential energy of 1 joule what would be the speed v of a 1 kg pendulum at the bottom of its stroke? 2. To what height h will the pendulum rise at the highest point in its stroke? Reading Assignment Solar Thermal Power and Energy Storage Historical Perspective
In the simple pendulum without friction, energy that is stored as potential energy at the top of its stroke ($E_p = mgh$) is transformed into kinetic energy at the bottom of the stroke ($E_k = \frac{1}{2}$ mv^2), then back as potential energy in a cyclic manner.1. For a stored potential energy of 1 joule what would be the speed v of a 1 kg pendulum at the bottom of its stroke?2. To what height h will the pendulum rise at the highest point in its stroke? Reading Assignment Solar Thermal Power and Energy Storage Historical Perspective Written Assignment
8/309/6Reading Assignment Solar Thermal Power and Energy Storage Historical Perspective Written Assignment Henry E. Willsie identified the major weakness of all the previously built solar engines in their
In the simple pendulum without friction, energy that is stored as potential energy at the top of its stroke ($E_p = mgh$) is transformed into kinetic energy at the bottom of the stroke ($E_k = \frac{1}{2}$ mv^2), then back as potential energy in a cyclic manner.1. For a stored potential energy of 1 joule what would be the speed v of a 1 kg pendulum at the bottom of its stroke?2. To what height h will the pendulum rise at the highest point in its stroke? Reading Assignment Solar Thermal Power and Energy Storage Historical Perspective Written Assignment
8/28 9/4 $\frac{4HI \rightarrow 2H_2 + ?}{2H_2O \rightarrow 2H_2 + ?}$

			Identify the wor	-			stored sola	ar energy.	
			What was earlie	r pioneer Cha	aries Tellier's	cnoice?			
		In the Concentrated Solar Power (CSP) projects shown in the following table, calculate the corresponding idealized Carnot Cycle efficiencies. Rank the thermal energy storage media according to the achievable thermal cycle efficiency							
								ninal	
			Project	Туре	Storage	Cooling	_	erature	
				-)] •	medium	loop	[° Cold	C] Hot	-
			Irrigation	Parabolic	Oil	Oil	200	228	-
			Pump Coolidge, Arizona, USA	Trough					
			IEA-SSPS Almeria, Spain	Parabolic Trough	Oil	Oil	225	295	
			SEGS I Daggett, California, USA	Parabolic Trough	Oil	Oil	240	307	
			Solar One Barstow, California, USA	Central Receiver	Oil Sand Rock	Steam	224	304	
			CESA -1 Almeria, Spain	Central Receiver	Molten salt	Steam	220	340	
			THEMIS Targasonne, France	Central Receiver	Molten salt	Molten salt	250	450	
			Solar Two, Barstow, California, USA	Central Receiver	Molten salt	Molten salt	275	565	
		Reading Assignment Solar Thermal Power and Energy Storage Historical Perspective							
			Written Assign Calculate the the thermal energy s	ment eoretically ac	hievable Carno a used in solar	ot cycle effici thermal appli	encies for	the follo	wing liquid
6	9/1	9/8	Storage 1	nedium					
			Mineral oil, lic petroleum (alk paraffins, petro	anes, cyclic	200 3	00			
			Synthetic oil, polyalphaolefi	n, synthetic	250 3	50			

			esters, hydrocracked/hydroisomeri					
			zed base oils.					
			Silicone oil, polymerized	300	400			
			siloxanes,Si-O-Si-O-	300	400			
			Si					
			Nitrite salts, KNO ₂ , NaNO ₂	250	450			
			Nitrate salts, NaNO ₃ ,	265	585			
			KNO ₃	205	565			
			Carbonate salts, Na ₂ CO ₃	450	850			
			Liquid Na	270	530			
				270	000			
			Reading Assignment					
			3. <u>Thermal Energy Storage</u>					
			Written Assignment			1 112		
7	9/6	9/13	Classify CSP plants according	to their c	peration	al conditions.		
	9/0	9/15	List the outpatie mixtures cons	idarad fa	r thamaa	l anarou staraga		
			List the eutectic mixtures considered for thermal energy storage.					
			Compare the heat capacities and heat of fusion of energy storage materials used in flat-plate					
			solar collectors.					
			Reading Assignment					
		9/15	4. Thermal Energy Storage with Solar Power Generation					
					-ower G			
8			Written Assignment	aanaidana	d fan Ca	uncontracted Salar Deriver Concretion CSD		
			List then compare the options considered for Concentrated Solar Power Generation, CSP.					
			List the reflecting materials used in CSP applications.					
	9/8							
	9/0		Define the Concentration Ratio CR in solar CSP applications.					
			List the types of tracking in CSP applications.					
			List the types of tracking in Cor applications.					
			List the choices of collector glazing materials in CSP applications.					
			Draw a diagram showing the favored energy storage strategy in CSP applications.					
	9/11	9/18	Reading Assignment					
			5. Battery Technology Written Assignment					
			0		C 11 ·			
9			In the SI system of units, compare the units of the following figures of merits used to compare storage batteries:					
			1. Specific Energy,					
			2. Specific Power,					
			3. Energy Density,					
			4. Power density.					
			Compare the different entires we der	ongidanati-	n for a fort	rea float of Electrical Vahialas (EVa)		
			Compare the different options under consideration for a future fleet of Electrical Vehicles (EVs). Describe the different usages of battery storage technology in:					
			1. Hybrid Electric Vehicles, HEVs,					
			2. Plug-in Hybrid Electric Vehicles, PHEVs,					
			3. Electric Vehicles EVs.					

10	9/13	9/20	Reading Assignment 6. Electric Vehicles Technology Written Assignment Compare the specific energy content of hydrogen and of lithium-ion batteries as energy storage media in automotive energy storage options. Compare a vehicle weight using hydrogen fuel cell vs. Li-ion batteries as a function of the attainable cruising range. Compare the material compositions (other than Li) of the following Li -ion batteries: 1. LCO 2. NCA 3. LMO 4. NMC How do the LCO batteries differ from the other types?	
11	9/15	9/22	Reading Assignment 7. Energy Hydrogenation and Decarbonization Written Assignment Write a one-page summary of the paper discussed in the class: Rachel Beck and Magdi Ragheb, "Production of Carbon-Neutral Hydrocarbons From CO ₂ a H ₂ In Lieu of Carbon Capture and Storage (CCS)," 10th International Conference on "Role of Engineering Towards a Better Environment, RETBE14, Alexandria University, Faculty of Engineering, 15-17 December 2014. Write down the equations describing the production of green diesel fuel from carbon dioxide and hydrogen. Write down the two half equations and their combination describing the operation of a typical fuel cell.	
12	9/18	9/25		
13	9/20	9/27		

Assignments Policy

Assignments will be turned in at the beginning of the class period, one week from the day they are assigned.

The first five minutes of the class period will be devoted for turning in, and returning graded assignments.

Late assignments will be assigned only a partial grade. Please try to submit them on time since once the assignments are graded and returned to the class, late assignments cannot be accepted any more.

If you are having difficulties with an assignment, you are encouraged to seek help from the teaching assistants (TAs) during their office hours. Questions may be emailed to TA's, but face-to-face interaction is more beneficial.

Although you are encouraged to consult with each other if you are having difficulties, you are kindly expected to submit work that shows your individual effort. Please do not submit a copy of another person's work as your own. Copies of other people's assignments are not conducive to learning, and are unacceptable.

For further information, please read the detailed assignments guidelines.