Nuclear Power in your car

(Radioisotopic Thermoelectric Generators)

Rui Lin Tan NPRE 498 – Energy Storage

Scope

- Background
- How it works
- Current Applications
- Advantages/ Disadvantages
- Possible Improvements
- RTG vehicle?

Background – Nuclear Batteries

Thermocouple type (Radioisotopic Thermoelectric Generators)

FIGURE 2-5. DIAGRAM OF GPHS-RTG ASSEMBLY

Background – RTGs

- First developed in the US in the 1950s by Mound Laboratories in Ohio
- Initially developed under the general designation: Systems for Nuclear Auxiliary Power (SNAP)
- First used in 1961 as SNAP 3 to power a navy spacecraft.
 - Weight: 4lbs, Power: 2.5W, Life: 280 days
- First Terrestrial use in "Fairway Rock" Alaska in 1966 (-1995)

How it works

- Energy Storage Medium: Radioisotopic Material capable of producing heat
- Direct conversion of heat to electricity
 - Seebeck Effect

How it works

- Seebeck Effect
 - production of an electromotive force and consequently an electric current in a loop of material consisting of at least two dissimilar conductors when two junctions are maintained at different temperatures. (Source: Encyclopaedia Britannica)

How it works

- Criterion for selection of Isotopes
 - 100 days < Half-Life < 100 years</p>
 - No gamma emission
 - Power > 0.1 W(th)/g

Radioisotope Heater Unit

Current Applications

- Power Source in space
- Power for remote facilities/ equipment

Unmanned Buoy

Curiosity Rover

Advantages

- Long Lifetime of continuous power
- Minimal maintenance needed (No moving parts)
- Small size and weight
- Independent of any external input
- Safety (No parts prone to failure)

Disadvantages

Name & Model	Used On (# of RTGs per User)	Maximum output		Radio-	Max fuel	
		Electrical (W)	Heat (W)	isotope	used (kg)	iviass (kg)
ASRG*	prototype design (not launched), Discovery Program	~140 (2x70)	~500	²³⁸ Pu	~1	~34
MMRTG	MSL/Curiosity rover	~110	~2000	²³⁸ Pu	~4	<45
GPHS-RTG	Cassini (3), New Horizons (1), Galileo (2), Ulysses (1)	300	4400	²³⁸ Pu	7.8	55.9–57.8
MHW-RTG	LES-8/9, Voyager 1 (3), Voyager 2 (3)	160	2400	²³⁸ Pu	~4.5	37.7
SNAP-3B	Transit-4A (1)	2.7	52.5	²³⁸ Pu	~2	2.1
SNAP-9A	Transit 5BN1/2 (1)	25	525	²³⁸ Pu	~1	12.3
SNAP-19	Nimbus-3 (2), Pioneer 10 (4), Pioneer 11 (4)	40.3	525	²³⁸ Pu	~1	13.6
modified SNAP- 19	Viking 1 (2), Viking 2 (2)	42.7	525	²³⁸ Pu	~1	15.2
SNAP-27	Apollo 12–17 ALSEP (1)	73	1,480	²³⁸ Pu	3.8	20
Buk (BES-5)**	RORSATs (1)	3000	100,000	²³⁵ U	30	~1000

Space Usage of RTGs

Disadvantages

- Low Efficiency (<10%)
- Radioisotope decay (~0.7-0.8% power loss per year)
- Safety
 - Radioactive
 Contamination
 - Proliferation

Possible Improvements

- Stirling Engine
 - 4x efficiency over pure RTGs

Current Battery Powered Vehicle

Tesla Model S

- Power output: 270kW / 362 hp
- Battery Capacity: 85 kWh
- Range: ≈ 300 miles

Space Usage of RTGs

Name & Model	Used On (# of RTGs per User)	Maximum output		Radio-	Max fuel	
		Electrical (W)	Heat (W)	isotope	used (kg)	iviass (kg)
ASRG*	prototype design (not launched), Discovery Program	~140 (2x70)	~500	²³⁸ Pu	~1	~34
MMRTG	MSL/Curiosity rover	~110	~2000	²³⁸ Pu	~4	<45
GPHS-RTG	Cassini (3), New Horizons (1), Galileo (2), Ulysses (1)	300	4400	²³⁸ Pu	7.8	55.9–57.8
MHW-RTG	LES-8/9, Voyager 1 (3), Voyager 2 (3)	160	2400	²³⁸ Pu	~4.5	37.7
SNAP-3B	Transit-4A (1)	2.7	52.5	²³⁸ Pu	~2	2.1
SNAP-9A	Transit 5BN1/2 (1)	25	525	²³⁸ Pu	~1	12.3
SNAP-19	Nimbus-3 (2), Pioneer 10 (4), Pioneer 11 (4)	40.3	525	²³⁸ Pu	~1	13.6
modified SNAP- 19	Viking 1 (2), Viking 2 (2)	42.7	525	²³⁸ Pu	~1	15.2
SNAP-27	Apollo 12–17 ALSEP (1)	73	1,480	²³⁸ Pu	3.8	20
Buk (BES-5)**	RORSATs (1)	3000	100,000	²³⁵ U	30	~1000

RTG powered vehicle

- 4 hp (3kW) Car! -> Max Speed: 22 mph
- Range: However far you can drive in 3 years at 22 mph! (578160 miles)

Other Possible Terrestrial Uses

Battery Capacity vs. Range

1 kWh \rightarrow 3.053miles range!!

- American average daily mileage: 27 miles (Source: Pike Research Survey)
- Battery power needed daily:

 $\frac{30 miles}{\frac{3.053 miles}{kWh}} = 9.8264 kWh$

• Equates to:

 $\frac{9.8264kWh}{24h} = 409.4 W_{electric}$ device running for 24 hours a day

- Assuming use with a Stirling Engine, η≈28%
- Thermal Power Needed: $\frac{1}{0.28} \times 409.4 = 1462.2 W_{th}$

Power, P= $1.6 \times 10^{-13} \frac{E\lambda A_v}{M} \left(\frac{W_{th}}{g}\right)$

Where E is the Energy Release per disintegration

 $\boldsymbol{\lambda}$ is the decay constant of the isotope

A_v is the Avogadro's number

M is atomic weight

Using the above equation for Pu-238, we get P = 0.56W/g

For 1462.2 W_{th}, we need: **<u>2.611kg</u>** of Pu-238

At \$4000/g, 2.611kg of Pu will cost: \$10.44 million!

• Proliferation Issues, etc.

Directions for advancement

- Another Radioisotope which produces MORE POWER / GRAM than Pu-238, but which requires LESS SHIELDING
- More efficient way to convert heat to electricity inside of a small space constraint

The future?

Every great advance in science has issued from a new audacity of imagination.

~John Dewey, The Quest for Certainty, 1929

No one should approach the temple of science with the soul of a money changer.

~Thomas Browne

References

- NUCLEAR BATTERY-THERMOCOUPLE TYPE SUMMARY REPORT. http://www.osti.gov/bridge/purl.cover.jsp?purl=/4807049-6bvOmJ/4807049.pdf
- http://www.spaceflightnow.com/atlas/av028/111117mmrtg/
- http://www.animatedsoftware.com/cassini/jpltruer.htm
- Anres Najar, "Electric Vehicle Conversion". NPRE 498 Research Presentation, Fall 2011
- NPRE 402, "Radioisotopes Power Production". Professor M. Ragheb https://netfiles.uiuc.edu/mragheb/www/NPRE%20402%20ME%20405%20Nuclear %20Power%20Engineering/Radioisotopes%20Power%20Production.pdf
- "Radioisotopic Battery with Vacuum Electrical Insulation". J. R. Lee, G. H. Miley, N. Luo, M. Ragheb. 2007.
- "Plutonium." Chemicool Periodic Table. Chemicool.com. 08 Oct. 2012. Web. 11/5/2012 http://www.chemicool.com/elements/plutonium.html.
- "Space Radioisotope Power Systems: Advanced Stirling Radioisotope Generator" NASA. Jan 2011.
 http://www.ne.doe.gov/pdfFiles/factSheets/SpaceRadioisotopePowerSystemsASRG.pdf>.

Questions?