Urban Energy Generation & Storage

Piyum Zonooz NPRE 498 – Energy Storage Prof. Ragheb Fall 2012

Introduction

- As of 2011, 82% of US population lives in "urban areas"
 - At least 1000 people per square mile
 - Energy intensity in these locations is amplified
 - Schools, health care, appliances, energy supply, transportation, food, clothing, water, and sewage
- In order to continue growth trends, a redesign of the city landscape is necessary
- Examples will be US based, specifically Chicago

The City Process

- Energy Electricity
- Fresh water
- Food
- Natural Gas and Oil

- Productivity
- Wealth
- Happiness
- Innovation

- Waste Heat
- Garbage

Sewage

Energy Sources

- Solar PV
- Wind turbines
- Energy storage utilization
- Mass recycling, compositing and sewage reclamation programs
- Methane regeneration

Redesign – Energy Sources

- Solar PV on tall buildings
- Electrochromic technology
- http://www.onyxsolar.com/
- <u>http://www.nsf.gov/news/special_reports/science_nation/</u> <u>sprayonsolar.jsp</u>
- Chicago is perfectly positioned with long north/south arrangement to capture rays from rising/setting sun
- Potential Energy Generated
 - Capacity factor
 - Total area of tall buildings (>30 stories)
 - Utilization factor

illinois.edu

PV Buildings

$$P = \left(\frac{Avg \ Area}{bldg}\right) (\#bldgs) \left(\frac{W}{m^2}\right) \gamma * \alpha$$

• Where:

- Feasibly, 300 bldgs tall enough
- $-\gamma$ is capacity factor: 0.4 (% of day collected)
- $-\alpha$ is utilization factor: 0.1 (aka efficiency)
- Calculated power available: **43 MW**

Redesign – Energy Sources

- Wind capture in the "windy city"
 - Using modern wind turbines on building roofs
 - Vertical Axis Wind Turbines
 - Large scale wind farm in Lake Michigan
 - 3-5 MW turbine systems
- Rain capture from lake affect precipitation
 - Use in fresh water
 - More appropriate for energy storage

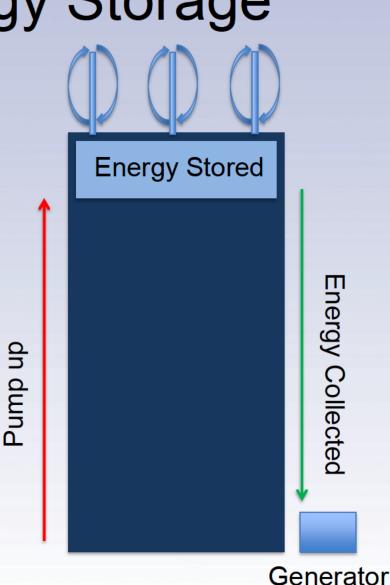
illinois.edu

VAWT

- Positioning VAWT on top of bldgs will allow direct power utilization
- Can be converted to electricity or used for pump storage
- On top of same 300 buildings, apply VAWT concept for feasibility study

Figure 3. Experimental concept for a vertical sail wind machine with a 3 kW rated output.

VAWT Power Generation


$$P = (\#bldg) \left(\frac{\#turbines}{bldg}\right) \left(\frac{W}{turbine}\right) \beta$$

- Where:
 - β is utilization factor (0.5)
 - 3 kW per turbine is used (efficiency accounted for here)
- Calculated power available: 13.5 MW

Pumped Energy Storage

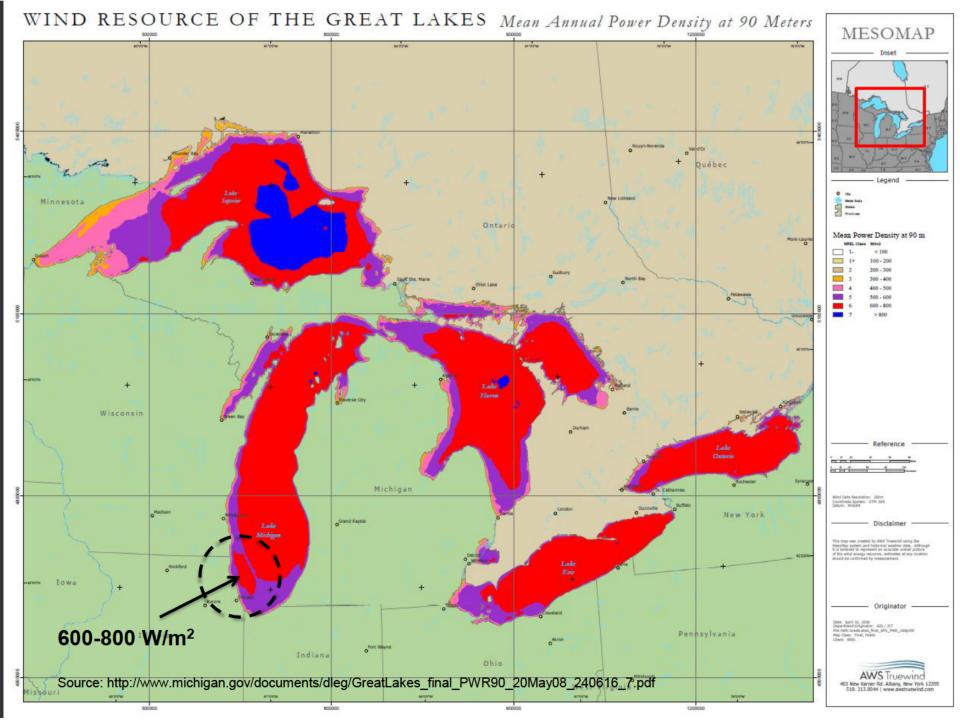
- Designate two floors of buildings to pumped water storage
- Buildings require pumps to move water up floors already
- Utilize HAWT to pump water for storage
- Capture precipitation
- Can also <u>dampen swaying</u>

Potential Stored Energy $P = (\#bldg) \left(\frac{Volume}{bldg}\right) \left(\frac{m}{Volume}\right) (H)g$

- Where:
 - H is average height
 - Volume is (average bldg width²)*(2 stories)
- Calculated Energy stored: 7.063 GJ

Conceivable power output: 150 MW

- 500 kW generator at each building
 full stored capacity would last 48 hours per building


illinois.edu

Lake Michigan HAWT

- Lake Michigan has excellent wind resources
- Cost limited
- Pushback from lake conservationists

HAWT Power Output

 $P = (\#turbines)(Avg P)(\beta)\eta$

• Where:

- β is utilization factor (0.5)
- 300 turbines
- 3 MW normal output per turbine
- η is power loss efficiency (0.7)
 - » Due to line loss
- Conceivable power output: 315 MW

Total Power Available

- Total Power available with treatment thus far:
 - 47 MW (PV)
 - 13.5 MW (HAWT)
 - 150 MW (max output from Pumped Storage)
 - 315 MW (VAWT)
- 525.5 MW available

Power Needed

• To calculate power needed:

$$P = (\#pop)(Avg E)\left(\frac{1 hr}{3600 sec}\right)$$

- Where:
 - Illinois, average monthly consumption is 770 kWh
 - Potential Population affected sized at 5 million
- Calculated power needed (residential only): 1069 MW

Continuing Calculations

• Using very conservative estimates:

Pgenerated _	$=\frac{525.5\ MW}{49.15\%}$
Pneeded	$\frac{1069 MW}{1069 MW} = 49.13\%$

 We can reduce a city's dependence on outside energy by almost 50%

Fiscally Responsible?

- PV modules show least ROI on capital
 - Significant reductions in cost per kWh will be necessary to justify expense
 - Higher efficiencies
- Buildings will have to be upgraded for new storage technologies
- Costs for Wind turbines are most competitive
 Capital, operational & maintenance

Vision Revisited

- A future where city planners come together with architects, engineers and private enterprise to plan a framework for city to constantly evolve from
- Lay the foundation for a constantly evolving technological base

City 2.0 Project

- <u>Http://www.thecity2.org/</u>
- Modifying the city:
 - For better access
 - Superior infrastructure
 - Modularity
 - Better resource distribution
 - Energy independence and redundancy
 - Higher quality of living
 - Higher efficiencies
 - More community involvement

Sources

- Energy Storage by Yves Brunet
- Energy Storage: A nontechnical Guide by Richard Baxter
- Renewable Energies with Energy Storage by Winston Stothert
- Energy Storage: A New Approach by Ralph Zito
- Large Energy Storage Systems Handbook by Frank S. Barnes
- Energy Storage for Power Systems by A G Ter-Gazarian
- Fundamentals of Energy Storage by Johannes Jensen & Brent Sorensen
- Solar Thermal Energy Storage by H.P. Garg, S.C. Mullick, Vijay K. Bhargava
- www.eia.gov
- <u>http://www.onyxsolar.com/</u>
- CNT: Chicago Regional Energy Snapshot 2011 Report

