THE SMART ELECTRICAL GRID

Monish Singh

BACKGROUND

- Hierarchical
 - Generation
 - Transmission
 - Distribution
- Over-engineered
 - Designed to meet maximum peak load

How Electricity Flows To Its Users

MOTIVATIONS

- Estimated that power outages and power quality disturbances cost the economy \$25-\$180 billion a year
- Northeast Blackout cost \$4-\$10 billion
- Consumption and production are changing
 - 20% renewables by 2030
 - National Research council estimates that by 2030 4-13% of light vehicles will be plug in electrics

Event	People Affected (Millions)	Location	Date
India Blackout 2012	670	India	July 30-31, 2012
Java-Bali Blackout 2005	100	Indonesia	August 18, 2005
Brazil Blackout 1999	97	Brazil	March 11, 1999
Brazil & Paraguay Blackout 2009	87	Brazil, Paraguay	November 10-11, 2009
U.S. & Canada Blackout 2003	55	the United States, Canada	August 14- 15, 2003
Italy Blackout 2003	55	Italy, Switzerland, Austria, Slovenia, Croatia	September 28, 2003
U.S. & Canada Blackout 1965	30	the United States, Canada	November 9, 1965

INTRODUCTION

- "The term 'Smart Grid' refers to the modernization of the electricity delivery system so that it monitors, protects, and automatically optimizes the operation of its interconnected elements-from the central and distributed generator through the high-voltage transmission network and the distribution system, to industrial users and building automation systems, to energy storage installations, and to end-use consumers, and their thermostats, electric vehicles, appliances, and other household devices."
 - -EPRI 2011

INTRODUCTION

REQUIREMENTS

- Reliable
- Flexible
- Efficient
- Sustainable
- Market-Enabling

EFFICIENT & MARKET ENABLING

- Advanced Metering Infrastructure
 - Smart Meters
 - Demand Side Management
 - Time of Use (TOU)
 - Real Time Pricing (RTP)
 - Critical Peak Pricing (CPP)
 - Home Area Networking (HAN)
 - Google PowerMeter
 - Microsoft Hohm
 - Demand Response (DR)
 - Capacity Bidding (CBP)
 - Agricultural and Pumping Interruptible (API)
 - Emergency Demand Response (EDRP)

RELIABILITY

- Flexible Alternating Current Transmission (FACTS)
 - Control energy flow on the grid with more precision
 - Reduced transmission losses and fault currents
 - Improved power quality
 - Improved power transfer capability
- Phasor Measurement Unit (PMU)
 - Real time monitoring of line voltage or current phase angles
 - Transient phenomena are spotted sooner
- Active Thermal Monitoring
 - Measure the loading level of branches in the power network
 - Enable 5-15% higher line loading

FLEXIBLE & SUSTAINABLE

Renewables

- Wind and solar are intermittent sources
- Can cause stresses on local distribution feeders where they are installed

Micro-grids

- "interconnected networks of distributed energy systems that can function whether they are connected to or separate from the grid"
- Vehicle-to-grid and Grid Storage

Flexible & Sustainable

- Sodium Sulfur Batteries (NaS)
 - 4 times the energy density of lead-acid
 - 2500+ cycles at 10% depth of discharge
 - 15 year life
- Flywheel Energy Storage (FES)
 - Very efficient ~ 95%
 - \$380-2500 \$/kW.h
 - Disadvantages include large size, low energy density and high standby loss
- Supercapacitor
 - Longer cycles than lead-acid
 - Lower energy density than lead-acid

Flexible & Sustainable

- Energy Storage Configuration
 - Aggregated
 - All ESSs are aggregated as one ESS and connected to the MG terminal
 - Superior performance to distributed ESS at same capacity
 - Can be used to soothe power flow fluctuations
 - Distributed
 - ESS are directly coupled to individual DERs
 - Can be made simpler since each storage system has to deal with a single type of source
 - Disadvantage is that the power produced by DERs has to be carried the transmission lines before being stored

REFERENCES

"Estimating the Costs and Benefits of the Smart Grid: A Preliminary Estimate of the Investment Requirements and Resultant Benefits of a Fully Functioning Smart Grid." Technical Report 1022519, Electric Power Research Institute, Palo Alto, CA.

"Smart Grid." Consumer Energy Report. Web. 16 Nov. 2012. < http://www.consumerenergyreport.com/smartgrid/>.

Hurd, Hillary. "The World's Other Biggest Blackouts." Passport. Foreign Policy, 31 Jan. 2012. Web. 20 Nov. 2012.

Blumsack, Seth, and Alisha Fernandez. "Ready or Not, Here Comes the Smart Grid!" Energy (2011): Web. 11 Nov. 2012.

- United States. United States Department of Energy. Office of Electric Transmission and Distribution. "Grid 2030" A National Vision for Electricity's Second 100 Years. July 2003. Web. 11 Nov. 2012.
- Koerth-Baker, Maggie. Before the Lights Go Out: Conquering the Energy Crisis before It Conquers Us. Hoboken, NJ: John Wiley & Sons, 2012. Print.
- Bayliss, Colin, and Brian Hardy. "Transmission and Distribution Electrical Engineering." Google Books. Dec. 2006. Web. 11 Nov. 2012. http://books.google.com/books/about/Transmission_and_distribution_electrical.html?id=6mEKAAaPqbkC>.
- Liserre, Marco, Thilo Sauter, and John Hung. "Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics." IEEE Industrial Electronics Magazine 4.1 (2010): 18-37.

Joskow, Paul L. "Creating a Smarter U.S. Electricity Grid." Journal of Economic Perspectives 26.1 (2012): 29-48.

Farhangi, H. "The Path of the Smart Grid." IEEE Power and Energy Magazine 8.1 (2010): 18-28.

"Vehicle to Grid State of The Art System Design". Royal Institute of Technology (Stockholm: Royal Institute of Technology). 2010.